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Weak Memory Models



• Why synchronization?
• Atomicity!

• Visibility!

• We have used modelling languages and pseudo-code.

• Real languages (e.g., Java) have additional issues:
• Memory model – how threads interact through memory and share data.

• In this lecture:
• Rudiments of the Java Memory Model and how to program in it.

• Principles applying to concurrent programming in other languages.

Telling the truth
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N. Piterman

• What are memory models?

• Why weak memory models?

• Something about the Java Memory Model (as an example of a weak memory 
model)

• Programming in the JMM

Lesson’s menu
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What are memory models?
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• As part of language semantics:
• How threads communicate through shared memory.

• What values are variable reads allowed to return?

• There are different memory models:
• Sequential Consistency – one of the “strongest” memory models. Often assumed for 

pseudocode (and up to now in this course).

• Java uses Java Memory Model (JMM) – a weak memory model.

Memory Models

N. Piterman 7Principles of Concurrent Programming



int x = 0;

int y = 0;

x = 1;

y = 1;

print(y);

print(x);

Reading variables: Sequential programming

What value will this read of y return?

Obviously 1! We always get the latest value!



bool done = false; int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming
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What are the possible outcomes of running?
1

2

3

1

2

3

Let’s consider all possible interleavings.



666

666

666

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming
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1

2

3

1

2

3

res

done true

1;1;2; No output

res

done true

1;1;2; No output

res

done

666

true

1;2;1;2; Output 666



Let’s see what Java says …
Demo OutOfOrderTest.java



Some visibility guarantees in SC:

• ”Program order” always maintained
• In particular, r = 666 always before done= true in any interleaving

• No “stale” values: Always see the latest  value written to any
variable

But the above guarantees not provided  by all weak memory 
models (e.g. JMM)!
Interleaving-based semantics is the “obvious” semantics.
Why make things more difficult? Why give up program order?
Because sequential consistency costs too much.

Reading variables: Sequential consistency (SC)

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}



You must understand the memory model in order to write correct programs. 

Take home message 1
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Why weak-memory models?
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For some compiler optimizations we want to reorder writes  to variables. 

This does not happen in pseudocode …

Messy details …

SC problem 1: Compiler  optimizations



Transformed program:  

y = 2;

x = 1;

z = x + y; // x = 1, y = 2, 

z = 3

SC problem 1: Compiler  optimizations
• E.g., the transformation to the right  

“semantics preserving” in  sequential 
setting if we only  consider final state of
program

• Not equivalent if we can inspect  
program under execution, which  we can 
if x and y are shared  variables in a 
concurrent setting

• Breaks illusion of “program order”!

Original program:

x = 1;

y = 2;

z = x + y; // x = 1, y = 2, 

z = 3

Write order  
swapped

Write order swapped



SC cost 2: Causes too much cache  synchronization

Cost of SC not obvious with too simplified machine models:

Shared global memory

CPU CPU CPUCPU



SC cost 2: Causes too much cache

Shared global memory

Local cache

resources

CPU CPU CPUCPU

Local cache Local cache Local cache

Slightly more realistic model of today’s computers:

Large (but slow) 

shared memory

Small and fast
In real 

machines:

Multiple 

layers of 

cache!

In modern CPUs, 

even a single 

CPU may 

execute out of 

order and in 

parallel …

Problem with SC:
If all CPUs are always to see latest 
value, must push all writes through 
to slow shared resources! 

Want to keep 

computations local 

(avoid 

communication 

overhead)



• Examples:
• Out of order execution
• Compiler optimizations
• Avoid communication

• SC too expensive in many situations

• Solution to mentioned problems:
Relax some guarantees offered by SC → we get weak memory models

Weaker memory models (potentially) more performant, but more difficult  to 
program in

Why not SC?



Something about JMM
Example of a weak memory model
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More context: machine details
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Programmer

Java

Machine

Program in Java 

memory model

Java protects us 

from assembly 

language and from 

the machine’s 

memory model.

Java compiler 

developers 

implement Java 

memory model in 

the memory model 

of the underlying 

machine (different 

machines have 

different memory 

models)



• Less convenient than SC, but implementable on modern machine  
architectures without too much performance loss

• There is no “right design”:

The Java memory model



• A few languages have converged to “sequential consistency for  data-race-free 
programs” memory models

• Java included in this family

• Reasoning principle: If there are no data races (under SC), we can  assume 
SC when reasoning about our program

• Important to remember definitions of data race and race conditions  

SC for data-race-free programs



Def. 
Two memory accesses are in a data race iff they access the same memory 
location simultaneously (they are interleaved next to each other), at least one 
access is a write, insufficient explicit synchronization used to protect the
accesses

Def. 
A program is data-race-free iff no SC execution of the program contains a data
race

Notes:

• We quantify over all SC executions in the second 

• Data-race-freedom is a “language-level” property!

Data races: slight (Java) variation



Does this program contain any data races?

bool x = false, y = false;  

t1 {

if (x) y = true;

}

t2 {

if (y) x = true;

}

Definition of data race surprisingly subtle



Note that this is an “application-level” property!

I.e., for a given program p, to answer the question “is p free from race  
conditions?” we must have access to the specification of p.

Race conditions



• For Java programs, we have SC for programs without data races

• Reasoning principle in more detail:
1. Assume SC and make sure that there are no data races

2. If no data races, we can assume SC when reasoning about race conditions

• What about the semantics of programs with data races?

• Will not be considered here 
• In e.g. C++ data races result in undefined behavior (see C++ specification or 

https://en.cppreference.com/w/cpp/language/memory_model)

• Java is supposed to be a ”safe language”, some guarantees 

SC for data-race-free programs, again



Programming in the JMM
As an example of a weak memory model
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• I.e: How does “weak memory models” affect my daily life as a programmer?

• Answer: You must “annotate” your program more than with SC
• Sprinkle additional synchronization information on top of your program

• Variable qualifiers, synchronization mechanisms (e.g. locks), etc.

• Exactly what “annotate” means depends on language

• Essentially, you annotate which data/actions are shared and which  are not

What does all this mean in practice?



• Race condition = even if we had a specification, we 
have  a data race so our reasoning principle does 
not apply!

• Race condition = depends on the specification we 
are to  satisfy (what it means for the program to be
correct)

Simpler example: only one variable! 
bool done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Does this program contain

• data races?

• race conditions?

• Data race = yes, done is accessed without  
synchronization and one of the accesses is a
write

• There is a problem with this 
program!

• From SC perspective, everything is 
fine!

• No atomicity problems … but 
visibility problems!



Simple example (fixed)
volatile done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Solution: Annotate your program. E.g., in Java 
volatile is considered synchronization.

• Does this program contain

• data races?

• race conditions?

• Data race = no, in Java volatileaccesses are  
considered synchronized

• Race condition = still depends on specification
• Example spec: “If the program outputs something, it 

must output 33”.
• Race condition = no, for the above specification the 

correct output does not depend on specific 
execution/interleaving. 

• Example spec: “The program outputs 33”.
• Race condition = yes, some interleavings give us the 

correct output, others do not. 



Similar example, with locks
lock lock = new lock();  

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {  

print(id);

}

Data races?
We have a race! All accesses to the 
shared  variable done must be 
synchronized!

Here we have (again) atomicity, but 
not visibility



id might exist as multiple copies…
lock lock = new lock();  

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {  

print(id);

}
Shared global memory

resources

CPUCPU

Local cache Local cacheid =
1

id = 0

id =
1

id = 1

Might read “stale” 

value



Similar example, with locks (fixed)
lock lock = new lock();

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {

lock.lock(); // new  

print(id);  

lock.unlock(); // new

}

This is how the program would look like 
with  proper annotations/synchronization

Now there are no data races.



JMM in More Detail
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Or memory 

consistency model



From the Java language specification (v. 15):

Two accesses to (reads of or writes to) the same variable are said to be conflicting if at 
least one of the accesses is a write.  

[…]

When a program contains two conflicting accesses (§17.4.1) that are not ordered by a  

happens-before relationship, it is said to contain a data race.

[…]

A program is correctly synchronized if and only if all sequentially consistent executions 
are free of data races.  

[…]

If a program is correctly synchronized, then all executions of the program will appear 
to be  sequentially consistent (§17.4.3).

Data races defined in terms of happens-before
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Happens-before example
static int x = 1;

x = 2;

Thread t = new Thread(() ->

System.out.println(x));

x = 3;

t.start();

• Data race because t reads x  without
synchronization?

• (Could argue read and write not  
overlapping in any SC execution.)

• x write happens-before x read,
because happens-before transitive





Demo OutOfOrderTest.java again



Reading suggestions

• See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can  
follow to do concurrent programming in Java instead of
having to learn the details of the Java memory model.

•E.g., the book provides useful “safe publication  
idioms”

• Also e.g.: Hans-J. Boehm, “Threads cannot be
implemented as a library” (2005).  
(https://doi.org/10.1145/1065010.1065042)

• Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You

models” (2012).
don’t know jack about shared variables or memory  

(https://doi.org/10.1145/2076450.2076465)



Advice from JCP, p. 16

• Don’t share the state variable across threads;

• Make the state variable immutable; or

• Use synchronization whenever accessing the state variable.

• If multiple threads access the same mutable state variable without  
appropriate synchronization, your program is broken. There are three  ways to 
fix it:

• Don’t underestimate
• the two first

alternatives!



Make sure to not have data races in your Java programs

One way to think about all of this: Atomicity and visibility

Visibility aspect new in weak memory models compared to SC!

Summary?
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